
www.umbc.edu

CMSC201
Computer Science I for Majors

Lecture 14 – Functions

Prof. Jeremy Dixon

Based on concepts from: http://mcsp.wartburg.edu/zelle/python/ppics2/index.html

www.umbc.edu

Last Class We Covered
• Functions

– Why they’re useful
– When you should use them

• Calling functions
• Variable scope
• Passing parameters

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives
• To introduce value-returning functions (return)
• To understand how modifying parameters can

change their values
• To practice function calls and some special

situations
• To reinforce the value of modular programming

www.umbc.edu

Function Review

www.umbc.edu

Function Vocabulary

def myFunc(year, name)
inside statements

def main():
myFunc(2015, "Xavier")

main()

function ________
_____ _________

_____ _________

function _____

function ___

www.umbc.edu

Function Vocabulary

def myFunc(year, name)
inside statements

def main():
myFunc(2015, "Xavier")

main()

function definition
formal parameters

actual parameters

function body

function call

www.umbc.edu

Visual Code Trace
def main():

sing("Fred")
print()
sing("Lucy")

def sing(person):
happy()
print("Happy BDay", person)
happy()
happy()

def happy():
print("Happy BDay to you!")

www.umbc.edu

Visual Code Trace
def main():

sing("Fred")
print()
sing("Lucy")

def sing(person):
happy()
print("Happy BDay", person)
happy()
happy()

person =
"Fred"

person: "Fred"

def happy():
print("Happy BDay to you!")

Note that the person variable
in sing() disappeared!

www.umbc.edu

Return Statements

www.umbc.edu

Giving Information to a Function
• Passing parameters provides a mechanism for

initializing the variables in a function
• Parameters act as inputs to a function
• We can call a function many times and get

different results by changing its parameters

www.umbc.edu

Getting Information from a Function
• We’ve already seen numerous examples of

functions that return values
int() , str(), open(), input(), etc

• For example, int() takes in a string or
double, and returns the integer of that
– Or 0 if nothing is passed in to it

www.umbc.edu

Functions that Return Values
• To have a function return a value after it is

called, we need to use the return keyword

def square(num)
return the square
return (num*num)

www.umbc.edu

Handling Return Values
• When Python encounters return, it

– Exits the function
– Returns control back to where

the function was called

• The value provided in the return statement is
sent back to the caller as an expression result

www.umbc.edu

Code Trace: Return from square()

def main():
x = 5
y = square(x)
print(y)

main()

def square(num1):
return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()
Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()
Step 6: Set the value of num1 in square() to x
Step 7: Return to main() and set y = return statement
Step 8: Print value of y

Let’s follow the flow of the code

www.umbc.edu

Code Trace: Return from square()

def main():
x = 5
y = square(x)
print(y)

main()

def square(num1):
return num1 * num1

Step 1: Call main()
Step 2: Pass control to def main()
Step 3: Set x = 5
Step 4: See the function call to square()
Step 5: Pass control from main() to square()
Step 6: Set the value of num1 in square() to x
Step 7: Return to main() and set y = return statement
Step 8: Print value of y

Let’s follow the flow of the code

www.umbc.edu

Testing: Return from square()
>>> square(3)
9
>>> print(square(4))
16
>>> x = 5
>>> y = square(x)
>>> print(y)
25
>>> print(square(x) + square(3))
34

www.umbc.edu

Function with Multiple Return Values

www.umbc.edu

Returning Multiple Values
• Sometimes a function needs to return more

than one value
• To do this, simply list more than one

expression in the return statement

def sumDiff(x, y):
sum = x + y
diff = x – y
return sum, diff

www.umbc.edu

Accepting Multiple Values
• When calling a function with multiple returns,

use multiple assignments

• Assignment is based on position, just like
passing in parameters is based on position

s, d = sumDiff(num1, num2)

www.umbc.edu

Accepting Multiple Values
def main():

num1 = int(input("Enter first number: "))
num2 = int(input("Enter second number: "))
s, d = sumDiff(num1, num2)
print("The sum is", s,

"and the difference is", d)

def sumDiff(x, y):
sum = x + y
diff = x - y
return sum, diff

main()

www.umbc.edu

Accepting Multiple Values
def main():

num1 = int(input("Enter first number: "))
num2 = int(input("Enter second number: "))
s, d = sumDiff(num1, num2)
print("The sum is", s,

"and the difference is", d)

def sumDiff(x, y):
sum = x + y
diff = x - y
return sum, diff

main()

s gets the first
value returned

d gets the second
value returned

www.umbc.edu

Every Function Returns Something
• All Python functions return a value, whether

they contain a return statement or not

• Functions without an explicit return hand
back a special object, denoted None

www.umbc.edu

Common Errors and Problems
• A common problem is writing a function that

is expected to return a value, but forgetting to
include the return statement

• If your value-returning functions produce
strange messages, check to make sure you
remembered to include the return!

www.umbc.edu

Modifying Parameters

www.umbc.edu

Other Ways to Pass Back Information
• Return values are the main way to send

information back from a function

• We may also be able to pass information back
by making changes directly to the parameters

• One of the problems with modifying
parameters is due to the “scope” we discussed

www.umbc.edu

Functions that Modify Parameters
• Suppose you are writing a program that

manages bank accounts.
• One function we would need to create is one

to accumulate interest on the account.

def addInterest(balance, rate):
newBalance = balance * (1 + rate)
balance = newBalance

www.umbc.edu

Functions that Modify Parameters
• The intent is to set the balance of the account

to a new value that includes the interest
amount. def main():

amount = 1000
rate = 0.05
addInterest(amount, rate)
print(amount)

def addInterest(balance, rate):
newBalance = balance * (1 + rate)
balance = newBalance

main()

bash-4.1$ python interest.py
1000
bash-4.1$

Output

Is this the
expected output?

www.umbc.edu

Functions that Modify Parameters
• We hope that that the 5% will be added to the

amount, returning $1050
• Was $1000 the expected output?

• No – so what went wrong?
– Let’s trace through the program and find out

www.umbc.edu

Functions that Modify Parameters
• First, we create two variables that are local to
main()

def main():
amount = 1000
rate = 0.05
addInterest(amount, rate)
print(amount)

def addInterest(balance, rate):
newBalance = balance * (1 + rate)
balance = newBalance

main()

Local Variables
of main()

www.umbc.edu

Functions that Modify Parameters
• Second, we call addInterest() and pass the

local variables of main() as actual parameters

def main():
amount = 1000
rate = 0.05
addInterest(amount, rate)
print(amount)

def addInterest(balance, rate):
newBalance = balance * (1 + rate)
balance = newBalance

main()

Call to
addInterest()

Passing amount
and rate, which are

local variables

www.umbc.edu

Functions that Modify Parameters
• Third, when control is passed to addInterest(),

the formal parameters of (balance and rate) are set
to the actual parameters of (amount and rate)

def main():
amount = 1000
rate = 0.05
addInterest(amount, rate)
print(amount)

def addInterest(balance, rate):
newBalance = balance * (1 + rate)
balance = newBalance

main()

Control passes to
addInterest()

balance = amount
rate = rate

www.umbc.edu

Functions that Modify Parameters
• Even though the parameter rate appears in both
main() and addInterest(), they are separate
because of scope

def main():
amount = 1000
rate = 0.05
addInterest(amount, rate)
print(amount)

def addInterest(balance, rate):
newBalance = balance * (1 + rate)
balance = newBalance

main()

Even though rate is in
both main() and
addInterest(),
they are in different
places in memory

www.umbc.edu

Functions that Modify Parameters
• In other words, the formal parameters

of a function only receive the values of
the actual parameters

• The function does not have access to the
variable that holds the actual parameter

• We call this passing parameters by value

www.umbc.edu

Functions that Modify Parameters
• Some programming languages (C++, Ada, and

many more) do allow variables themselves to
be sent as parameters to a function
– This mechanism is called passing by reference

• When passing by reference, the value of the
variable in the calling program actually
changes

www.umbc.edu

Functions that Modify Parameters
• Since Python doesn’t have this capability,

one alternative would be to change the
addInterest function so that it
returns the newBalance

www.umbc.edu

Functions that Modify Parameters
def addInterest(balance, rate):

newBalance = balance * (1 + rate)
return newBalance

def test():
amount = 1000
rate = 0.05
amount = addInterest(amount, rate)
print(amount)

test()

www.umbc.edu

Code Trace (return statement)

def main():
amount = 1000
rate = 0.05
amount = addInt(amount, rate)
print(amount)

main()

def addInt(balance, rate):
newBal = balance * (1 + rate)
return newBal

Step 1: Call main()
Step 2: Pass control to def main()
Step 3: Set amount = 1000 and rate = 0.05
Step 4: Set amount = return statement of addInt()
Step 5: Pass control from main() to addInt()
Step 6: Set the value of balance in addInt() to amount
Step 7: Set the value of rate in addInt() to rate
Step 8: Set value of newBal to balance * (1 + rate)
Step 9: Return to main() and set value of amount = newBal
Step 10: Print value of amount

Let’s follow the flow of the code

Once we leave addInt(), the
values of balance and rate are

removed from memory

www.umbc.edu

Functions that Modify Parameters
• Instead of looking at a single account, say we are

writing a program for a bank that deals with many
accounts

• We could store the account balances in a list, then
add the accrued interest to each of the balances in
the list

• We could update the first balance in the list with
code like:
balances[0] = balances[0] * (1 + rate)

www.umbc.edu

Functions that Modify Parameters
• This code says, “multiply the value in the 0th

position of the list by (1 + rate) and store
the result back into the 0th position of the
list”

• A more general way to do this would be
with a loop that goes through positions 0,
1, …, length – 1

www.umbc.edu

Functions that Modify Parameters
addinterest3.py
Illustrates modification of a mutable parameter (a list)

def addInterest(balances, rate):
for i in range(len(balances)):

balances[i] = balances[i] * (1 + rate)

def test():
amounts = [1000, 2200, 800, 360]
rate = 0.05
addInterest(amounts, rate)
print(amounts)

test()

www.umbc.edu

Functions that Modify Parameters
• Remember, our original code had these

values:
[1000, 2200, 800, 360]

• The program returns:
[1050.0, 2310.0, 840.0, 378.0]

• What happened? Python passes parameters
by value, but it looks like amounts has been
changed!

www.umbc.edu

Functions that Modify Parameters
• The first two lines of
test create the
variables amounts
and rate.

def addInterest(balances, rate):
for i in range(len(balances)):

balances[i] = balances[i] * (1+rate)

def test():
amounts = [1000, 2200, 800, 360]
rate = 0.05
addInterest(amounts, 0.05)
print(amounts)

• The value of the
variable amounts is a
list object that contains
four int values.

www.umbc.edu

Functions that Modify Parameters

www.umbc.edu

Functions that Modify Parameters
• Next, addInterest executes. The loop goes

through each index in the range 0, 1, …, length –1
and updates that value in balances.
def addInterest(balances, rate):

for i in range(len(balances)):
balances[i] = balances[i] * (1+rate)

def test():
amounts = [1000, 2200, 800, 360]
rate = 0.05
addInterest(amounts, 0.05)
print(amounts)

www.umbc.edu

Functions that Modify Parameters

www.umbc.edu

Functions that Modify Parameters
• In the diagram the old values are left hanging around to

emphasize that the numbers in the boxes have not
changed, but the new values were created and assigned
into the list.

• The old values will be destroyed during garbage collection.

def addInterest(balances, rate):
for i in range(len(balances)):

balances[i] = balances[i] * (1+rate)

def test():
amounts = [1000, 2200, 800, 360]
rate = 0.05
addInterest(amounts, 0.05)
print amounts

www.umbc.edu

Functions that Modify Parameters
• When addInterest terminates, the list

stored in amounts now contains the new
values.

• The variable amounts wasn’t changed (it’s
still a list), but the state of that list has
changed, and this change is visible to the
calling program.

www.umbc.edu

Function Call Exercise

www.umbc.edu

Function Calls
• As we have previously discussed, function calls

pass actual parameters to a function definition

• The question is: what are valid actual
parameters in Python?

www.umbc.edu

Valid or Invalid Function Calls
1. name = backwards(name)
2. intAge = 3calc(dob)
3. totalPay = totalCalc(rate, hours))
4. maxNum = avgScore(listOfScores, len(listOfScores))

1. Yes
2. No, invalid function name
3. No, extra parens
4. Yes, we can make function calls as an actual

parameter.

www.umbc.edu

Scope and Parameters

www.umbc.edu

Mutable and Immutable
• In python, certain structures cannot change

once they are created and they are called
immutable.
– They include integers, strings, and tuples

• Other structures can be changed after they
are created and they are called mutable
– They include lists, dicts, and user-defined lists

www.umbc.edu

Scope in Functions
when a function is called, formal parameter B

is assigned the actual parameter A

A is immutable
(int, string, tuple)

From: http://stackoverflow.com/questions/986006/how-do-i-pass-a-variable-by-reference

A is mutable
(lists, dicts, or user-defined)

A doesn’t change
If B changes

B is assigned to
something else

(B = “Hello”)

B is modified
in-place

(B.append(2))

A doesn’t change
If B changes

A changes
If B changes

Pretend we call a
function.

Depending on what type
of data structure we are

using, the data may
permanently change

www.umbc.edu

Functions that Modify Parameters
• Compared to other programming language

such as C++, C, and Java, Python appears to
always pass parameters by value

• However, as previously stated, mutable
structures (lists, dicts, or user-defined)
changes to the state of the object will be
visible to the calling program

www.umbc.edu

Modularity

www.umbc.edu

Functions and Program Structure
• So far, functions have been used as a

mechanism for reducing code duplication.
• Another reason to use functions is to make

your programs more modular.
• As the algorithms you design get increasingly

complex, it gets more and more difficult to
make sense out of the programs.

www.umbc.edu

Functions and Program Structure
• One way to deal with this complexity is to

break an algorithm down into smaller
subprograms, each of which makes sense on
its own.

www.umbc.edu

Any Other Questions?

www.umbc.edu

Announcements
• We’ll go over the exam in class

on October 28th and 29th

• Homework 6 is out
– Due by Thursday (Oct 22nd) at 8:59:59 PM

• Homework 7 will be out Oct 22nd
• Project 1 will be out Oct 29th

	CMSC201� Computer Science I for Majors��Lecture 14 – Functions
	Last Class We Covered
	Any Questions from Last Time?
	Today’s Objectives
	Function Review
	Function Vocabulary
	Function Vocabulary
	Visual Code Trace
	Visual Code Trace
	Return Statements
	Giving Information to a Function
	Getting Information from a Function
	Functions that Return Values
	Handling Return Values
	Code Trace: Return from square()
	Code Trace: Return from square()
	Testing: Return from square()
	Function with Multiple Return Values
	Returning Multiple Values
	Accepting Multiple Values
	Accepting Multiple Values
	Accepting Multiple Values
	Every Function Returns Something
	Common Errors and Problems
	Modifying Parameters
	Other Ways to Pass Back Information
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Code Trace (return statement)
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Functions that Modify Parameters
	Function Call Exercise
	Function Calls
	Valid or Invalid Function Calls
	Scope and Parameters
	Mutable and Immutable
	Scope in Functions
	Functions that Modify Parameters
	Modularity
	Functions and Program Structure
	Functions and Program Structure
	Any Other Questions?
	Announcements

